The C-terminal unique region of desmoglein 2 inhibits its internalization via tail–tail interactions

نویسندگان

  • Jing Chen
  • Oxana E. Nekrasova
  • Dipal M. Patel
  • Jodi L. Klessner
  • Lisa M. Godsel
  • Jennifer L. Koetsier
  • Evangeline V. Amargo
  • Bhushan V. Desai
  • Kathleen J. Green
چکیده

Desmosomal cadherins, desmogleins (Dsgs) and desmocollins, make up the adhesive core of intercellular junctions called desmosomes. A critical determinant of epithelial adhesive strength is the level and organization of desmosomal cadherins on the cell surface. The Dsg subclass of desmosomal cadherins contains a C-terminal unique region (Dsg unique region [DUR]) with unknown function. In this paper, we show that the DUR of Dsg2 stabilized Dsg2 at the cell surface by inhibiting its internalization and promoted strong intercellular adhesion. DUR also facilitated Dsg tail-tail interactions. Forced dimerization of a Dsg2 tail lacking the DUR led to decreased internalization, supporting the conclusion that these two functions of the DUR are mechanistically linked. We also show that a Dsg2 mutant, V977fsX1006, identified in arrhythmogenic right ventricular cardiomyopathy patients, led to a loss of Dsg2 tail self-association and underwent rapid endocytosis in cardiac muscle cells. Our observations illustrate a new mechanism desmosomal cadherins use to control their surface levels, a key factor in determining their adhesion and signaling roles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of the C-terminal tail of the rat thyrotropin-releasing hormone receptor-1 in interactions and cointernalization with beta-arrestin 1-green fluorescent protein.

Coexpression of the rat thyrotropin releasing hormone receptor-1 with beta-arrestin 1-green fluorescent protein (GFP) in human embryonic kidney 293 cells results in agonist-dependent translocation of the arrestin to the plasma membrane followed by its cointernalization with the receptor. Truncations of the receptor C-terminal tail from 93 to 50 amino acids did not alter this. Truncations to few...

متن کامل

Internalization of gonadotropin-releasing hormone receptors (GnRHRs): does arrestin binding to the C-terminal tail target GnRHRs for dynamin-dependent internalization?

Activation of seven-transmembrane receptors is typically followed by desensitization and arrestin-dependent internalization via vesicles that are pinched off by a dynamin collar. Arrestins also scaffold Src, which mediates dynamin-dependent internalization of beta2-adrenergic receptors. Type I mammalian gonadotropin-releasing hormone receptors (GnRHRs) do not rapidly desensitize or internalize ...

متن کامل

Emi2 Inhibition of the Anaphase-promoting Complex/Cyclosome Absolutely Requires Emi2 Binding via the C-Terminal RL Tail

Emi2 (also called Erp1) inhibits the anaphase-promoting complex/cyclosome (APC/C) and thereby causes metaphase II arrest in unfertilized vertebrate eggs. Both the D-box and the zinc-binding region (ZBR) of Emi2 have been implicated in APC/C inhibition. However, it is not well known how Emi2 interacts with and hence inhibits the APC/C. Here we show that Emi2 binds the APC/C via the C-terminal ta...

متن کامل

Pivotal role for the cytoplasmic carboxyl-terminal tail of a nonmammalian gonadotropin-releasing hormone receptor in cell surface expression, ligand binding, and receptor phosphorylation and internalization.

The gonadotropin-releasing hormone receptor (GnRH-R) of the African catfish couples to phospholipase C and belongs to the large family of G protein-coupled receptors. We recently demonstrated that removal of the carboxyl-terminal tail (S331-Q379) from the catfish GnRH-R results in a loss of agonist binding; the current study sought to define more precisely the role of this region in receptor fu...

متن کامل

NMR studies of interactions between C-terminal tail of Kir2.1 channel and PDZ1,2 domains of PSD95.

Control of surface expression of inwardly rectifying potassium (Kir) channels is important for regulating membrane excitability. Kir2 channels have been shown to interact directly with PDZ-containing proteins in the postsynaptic density (PSD). These scaffold proteins, such as PSD95, bind to Kir2.1 channels via a PDZ-binding motif (T/S-x-Phi) in the C-terminal tail (SEI428). By utilizing a multi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 199  شماره 

صفحات  -

تاریخ انتشار 2012